
LLNL-JRNL-503831

Zipper: A compact connectivity
data structure for triangle
meshes

T. Gurung, M. Luffel, P. Lindstrom, J. Rossignac

October 10, 2011

Computer-Aided Design

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Zipper: A compact connectivity data structure for triangle meshes

Topraj Gurung
Georgia Institute of Technology

Mark Luffel
Georgia Institute of Technology

Peter Lindstrom
Lawrence Livermore National Laboratory

Jarek Rossignac
Georgia Institute of Technology

Abstract

We propose Zipper, a compact representation of incidence and adjacency for manifold triangle meshes with fixed connectivity.
Zipper uses on average only 6 bits per triangle, can be constructed in linear space and time, and supports all standard random-
access and mesh traversal operators in constant time. Similarly to the previously proposed LR (Laced Ring) approach, the Zipper
construction reorders vertices and triangles along a nearly Hamiltonian cycle called the ring. The 4.4x storage reduction of Zipper
over LR results from three contributions: (1) For most triangles, Zipper stores a 2-bit delta (plus three additional bits) rather than
a full 32-bit reference. (2) Zipper modifies the ring to reduce the number of exceptional triangles. (3) Zipper encodes the remaining
exceptional triangles using 2.5x less storage. In spite of these large savings in storage, we show that Zipper offers comparable
performance to LR and other data structures in mesh processing applications. Zipper may also serve as a compact indexed format
for rendering meshes, and hence is valuable even in applications that do not require adjacency information.

Key words: triangle meshes, mesh connectivity, Hamiltonian cycle, differential coding

1. Introduction

Zipper, introduced here, is a compact representation
for manifold triangle meshes with fixed connectivity. It is
a randomly-accessible-and-traversable (RAT) mesh rep-
resentation: it provides constant-time retrieval of any
triangle, vertex, or corner (equivalently half-edge) in the
mesh, and also supports constant-time access to the con-
secutive vertices around a triangle and to the consecutive
incident triangles around a vertex.

Popular polygon representations such as the Half-Edge
representation use 48 bpt (bits per triangle) to represent
the geometry (using three 32-bit floats per coordinate) and
528 bpt to represent the connectivity [1], as discussed in
Sec. 2.2. The most compact existing triangle RAT, BELR
(bit-efficient LR) [2], uses 26 bpt on average for connectiv-
ity. It reorders most vertices and triangles along a ring (a
nearly Hamiltonian cycle) and stores one reference for each

normal triangle and up to 15 references for each exceptional
triangle.

Zipper uses a similar reordering, but represents most ver-
tex indices in normal triangles using differential coding,
which reduces storage for most triangles to only a 2-bit
delta and 3 additional bits, and uses 2.5x less storage for ex-
ceptional triangles. It stores connectivity using only 6 bpt
(on average over tested models), and hence provides a 4.4x
improvement over BELR.

This storage decrease is remarkable, because it improves
by 4.4x on the best results achieved over the past 40 years by
experts across many research areas. By comparison, these
earlier efforts have seen a decrease in storage of 17x from
432 bpt [3] to 26 bpt [2]. Zipper uses only an equivalent of
a fifth of a 32-bit reference per triangle to store enough in-
formation to access (in constant time) not only the three
vertices of each triangle, but also its three neighboring tri-
angles, as well as one incident triangle for each vertex.

Fig. 1. The standard corner operators associate with corner c its
vertex c.v, triangle c.t, and next c.n and opposite c.o corners. The
other corner operators, previous c.p, swing c.s, unswing c.u, left c.l,
and right c.r are derived from c.n and c.o. In addition, v.c returns
one corner of vertex v, and t.c returns one corner of triangle t.

Our Zipper implementation of the standard mesh traver-
sal operators not only has constant-time complexity, but is
very fast (7–40 nanoseconds per operator). When executed
on a small mesh, the basic operators for mesh access and
traversal in Zipper are faster than those in BELR, but about
1.8x–3.6x slower than their counterparts in the optimized
standard LR. However, the impact of this overhead on the
performance of an application is often negligible when com-
pared to other processing costs, and is more than compen-
sated by performance gains resulting from fewer page faults
when processing large meshes that do not fit in memory.

Zipper is significantly more compact than the commonly
used triangle strip/fan or indexed formats. Hence, it is also
a good candidate for applications (such as rendering) that
do not require adjacency information.

2. Prior Art

2.1. Corner operators

Many mesh processing algorithms may be formulated us-
ing operators that access the next vertex around a triangle
or the next triangle around a vertex. In this paper we use
triangle corners [4], which uniquely identify a triangle
and one incident vertex, to mark a specific spot on the con-
nectivity graph of the mesh and to serve as a mesh traver-
sal primitive. Hence, our mesh traversal operators manip-
ulate corners, their vertices and their triangles. Note that
an equivalent set of operators may be defined in terms of
half-edges (also called edge-uses or darts) [1, 5], because
one may trivially establish a mapping between corners and
half-edges.

RAT mesh representations support the standard set of
corner operators [6], defined below. The operators provide
a simple mechanism to access all vertices, triangles, and
corners in constant time from their IDs or from adjacent
elements.

Given a corner c, the standard corner operators (see
Fig. 1) are: the triangle c.t of c, the vertex c.v of c, the
next corner c.n in c.t, the opposite corner c.o defined such
that c.n.v = c.o.n.n.v and c.n.n.v = c.o.n.v, a corner t.c

of triangle t, and a corner v.c of vertex v. From these, we
define a set of derived corner operators: the previous
corner c.p = c.n.n in c.t, the left c.l = c.n.o and right c.r =
c.p.o neighboring corners of c, and the swing c.s = c.l.n
and unswing c.u = c.r.p corners used to walk around c.v. In
this paper we focus on efficiently encoding c.v and c.o—the
remaining operators can be inferred trivially (see [2]).

Early boundary graph representations of connectivity [1]
use 32-bit memory pointers. Some of the more recent rep-
resentations (for example [4]) assign consecutive positive
integers to vertices, triangles, and corners, and use arrays
to store sorted lists of references (32-bit integer indices),
rather than pointers, which, for example, identify a trian-
gle incident upon a vertex, the three vertices of a triangle,
or the three opposite corners in adjacent triangles.

To simplify our algorithms and representation, as others
have done in the past, we assume the mesh is manifold. Fur-
thermore, our storage and performance statistics are only
representative of meshes where the genus and the number
of border edges are small relative to the number m of ver-
tices. With these assumptions, there are roughly n = 2m
triangles and 3m edges. So, if a representation uses a total
of nr references, we say that its storage cost is 32r bpt (bits
per triangle) or r rpt (references per triangle).

To reduce connectivity storage, some representations
reorder vertices, corners, or triangles. For example, ECT
(the Extended Corner Table) [4,6] encodes connectivity in
6.5 rpt, by assigning the three corners of a triangle con-
secutive numbers that are consistent with the orientation
of the triangle. This assumption makes it unnecessary to
store several of these look-up tables, because their con-
tent may be computed in constant time when needed:
c.t = bc/3c, c.n = 3c.t + (c + 1 mod 3), t.c = 3t. Even with
this improvement, connectivity accounts for up to 90% of
the total storage when using 16-bit quantized coordinates
to represent geometry.

2.2. General representations

Early representations use much storage, because they
cater to more general (polygonal or higher-dimensional)
meshes.

Brisson’s cell-tuple structure [7] generalizes the quad-
edge data structure of Guibas and Stolfi [8], which was re-
stricted to 2-manifolds without boundaries, and the facet-
edge data structure of Dobkin and Laszlo [9], which catered
to subdivisions of 3-manifolds. It is restricted to subdivided
manifolds with or without boundary. When applied to tri-
angle meshes, the cell-tuple structure associates each trian-
gle t with 6 groupings (n-tuples), each one corresponding
to a choice of three entities (v, e, t): the triangle t, an edge
e of t, and a vertex v of e. There are 6 groupings for each
triangle because one has 3 choices for e and then 2 choices
for v. With each grouping g = (v, e, t), one stores a refer-
ence to triangle t and to vertex v, plus three references to
adjacent groupings: s0(g) returns grouping (v′, e, t), where

2

v′ is the other vertex of e; s1(g) returns grouping (v, e′, t),
where e′ is the other edge of t that is incident upon v; and
s2(g) returns grouping (v, e, t′), where t′ is the other tri-
angle incident upon e. To support the standard operators,
one also stores, for each triangle and for each vertex, a ref-
erence to one of its groupings. Hence, the total storage cost
for connectivity is 31.5 rpt: 6 tuples per triangle that store
5 references each (vertex, triangle, and 3 swaps), plus a tu-
ple reference for each vertex and triangle.

In the cell-tuple structure, groupings g, s0(g), s2(g), and
s0(s2(g)) refer to the same edge. The popular Winged-Edge
representation [3] combines them into a single edge, with
which it associates references to its two bounding vertices,
to its two incident triangles, and to the previous and next
edge in each triangle. To be compatible with the RAT op-
erators supported by other schemes, we also assume that
it stores a reference to a winged-edge for each triangle and
each vertex, so as to support the v.c, t.c, and c.t opera-
tors in constant time. Adding these references pushes the
extended winged-edge storage cost to 13.5 rpt.

The Half-Edge representation [1] associates with each
half-edge a reference to the next, previous and opposite
half-edge, together with a reference to a bounding vertex
and incident face for a storage cost of 5 references per half-
edge, or 15 rpt. Adding support for t.c and v.c for their half-
edge counterpart yields a total cost of 16.5 rpt. The Surface-
Mesh representation [10] uses half-edges, but reorders them
so that opposite ones are consecutive, which eliminates one
reference per half-edge. Surface-Mesh also does not store a
reference to the previous half-edge in a triangle. Hence, its
resulting storage cost is 10.5 rpt.

Star-vertices [11] stores for each vertex a radially sorted
list of references to neighboring vertices. It also stores the
reference to where that list starts. To make it compliant
with our definition of RAT, we must add a reference from
each triangle to one of its vertices or half-edges (equivalent
to t.c) and a reference from each half-edge to its incident
triangle. Hence the total cost includes an average of 6 ref-
erences to neighboring vertices from each vertex (two per
edge or equivalently 3 rpt), one reference per half-edge to
an incident triangle (that amounts to 3 rpt), a reference
per vertex to the start of the list (1 per vertex, or equiva-
lently 0.5 rpt), and 1 rpt for t.c. Hence, the total storage
for a RAT compatible star-vertices mesh is 7.5 rpt.

2.3. Representations for triangle meshes

Representations restricted to triangle meshes exploit the
regularity of the connectivity (3 vertices per triangle and 3
neighbors per interior triangle) and reorder triangles, edges,
and/or vertices.

The Directed Edge representation [12] is identical to the
Corner Table [4], when considering a bijection between half-
edges and corners. Both use 6.5 rpt when augmented with
v.c references to make them RAT compatible.

SOT [6] reorders triangles so that triangle i of the first m

vv.N

v.R

v.L

Ring

v.1

v.6v.4

v.5

v.2 v.0

v.R.P.6

v.R.P

v.P

Fig. 2. With each ring vertex v, LR stores references v.L and v.R to
the tips of the two triangles incident upon ring edge (v, v.N).

triangles corresponds to vertex i, where m is the number of
vertices. Hence, there is no need to store c.v, since it may be
recovered by swinging around v until the triangle t = v <
m is reached. The v.c operator is also available implicitly.
SOT stores only the adjacency table, and therefore requires
only 3 rpt.

Catalog-based representations [13] group triangles into
facets and, instead of storing the internal connectivity of
each facet, they store a reference to a catalog, in which the
results of mesh operators are stored for look-up. The most
compact version uses 3.83 rpt. SQuad [14] uses a very small
catalog. It matches most vertices with an adjacent pair of
incident triangles, making it possible to avoid storing one
incidence reference and one adjacency reference for most
triangles. Hence SQuad uses slightly more than 2 rpt, de-
pending on the mesh.

Tripod [15] computes minimal Schnyder woods to orient
the edges and group them into 3 sets, each defining a vertex
spanning tree. It stores, for each vertex, the 3 references
to its parent in each tree (3 outgoing edges) and also 3
references to incoming edges (each one radially following
an outgoing edge). Making it compliant to support t.c and
to store a triangle ID with each half-edge brings the total
cost to 7 rpt. A recently proposed variation [16] offers the
option of reordering the vertices to further reduce storage
to 2 rpt (not counting the cost of t.c and references from
edges to incident triangles).

3. LR

The Zipper approach presented here builds upon the re-
cently introduced LR representation [2]. LR reorders the
vertices and triangles of a mesh along a nearly Hamiltonian
cycle called the ring. Given a ring vertex (a vertex visited
by the ring) v, let v.N and v.P denote the next and previ-
ous vertex along the ring. v.N and v.P can be obtained by
incrementing or decrementing v modulo mr, where mr is
the number of ring vertices. LR associates the two triangles
incident on a (directed) ring edge e = (v, v.N) with vertex
v. LR then stores, for each v, the (integer) references v.L
and v.R to the tip vertices (those not on e) of the two trian-
gles incident upon e. Fig. 2 shows a common arrangement.

The ring typically contains more than 99.99% of the
vertices and is computed using the linear-time “Ring-
Expander” algorithm. The few isolated vertices are han-
dled as exceptions.

3

Tw
2

T2

T1

T1

Ti
1

T0

T1

T1

Tw
0

T1

T2

Fig. 3. The classification of triangles (T0, T1, T2) in relation to the
ring. A superscript w denotes wart triangles and a superscript i
denotes triangles adjacent to one or more non-wart T0 triangles.

3.1. Ring-based classification of triangles

The ring defines three types of triangles: T1 (or normal)
triangles are bounded by a single ring edge; T2 (or dead-
end) triangles have 2 ring edges; and T0 (or bifurcation)
triangles have none (see Fig. 3). Most triangles are of type
T1.

A T2 triangle (which may be easily identified at runtime
by testing whether v.N.L = v) is incident upon two con-
secutive ring edges, say (v, v.N) and (v.N, v.N.N). LR as-
sociates T2 triangles with the second one of these edges.

LR identifies adjacent T0/T2 pairs and calls them warts.
About 80% of T0 triangles are warts. LR uses the notation
Tw

0 and Tw
2 for triangles in warts. We use the term split to

refer to a non-wart T0 triangle that has 3 ring vertices and
is not adjacent to another T0 triangle, and the term end
to refer to a non-wart T2 triangle.

T0 (bifurcation) triangles that are not part of a wart are
stored in a separate Corner Table [4].

A small number of vertices are not part of the ring (typ-
ically about ∼0.005%). LR calls these vertices and their
incident triangles isolated. Any isolated triangle is a T0,
because if it were bounded by a ring edge, the ring could
be trivially expanded to include the isolated vertex.

3.2. Adjacency

With each vertex v on the ring LR associates two tri-
angles whose corners are labeled (v.0, v.1, . . . , v.6) (see
Fig. 2). LR does not need to store opposite adjacency
references between corners v.1 and v.5 as this informa-
tion can be inferred. The opposites of the other 4 corners
(v.0, v.2, v.4, v.6) may often be recovered using simple se-
quences of the ring operators: v.L, v.R, v.P, and v.N (see
Fig. 2 for an example where v.6.0 may be computed as
v.R.P.6). When recovering these opposites, LR examines
a small, fixed set of such sequences.

For T0 triangles, there is no guaranteed constant-time
recipe to recover their corners from opposite ones by using
a constant length cascade of vertex operators. Hence, these
references must be stored explicitly. Because these explicit

references do not fit in the regular LR ring structure, an
indirection (exception) is used to store them.

LR combines three main ideas:

(i) LR stores vertices in ring order, and hence references
from a ring vertex v to the next v.N or previous v.P
ring vertex are implicit. For most ring vertices, trian-
gles (v, v.L, v.N) and (v, v.N, v.R) are implicitly de-
fined and associated with IDs 2v and 2v + 1.

(ii) LR stores the references v.L and v.R explicitly. Given
that most vertices are in the ring, this amounts to
storing one reference (32 bits) per triangle.

(iii) LR uses additional storage (up to 15 references per
exceptional triangle) for representing the connectiv-
ity around the exception triangles that are not inci-
dent on any ring edge.

4. Zipper

Zipper uses the Ring-Expander algorithm from LR to
build a ring and to renumber the vertices, triangles and
corners. Zipper provides three improvements to LR:

(i) To reduce the number of exceptions, Zipper applies
the Ring-Bender algorithm, as described in Sec. 5.

(ii) Zipper reduces by 2.5x the storage cost associated
with exception triangles. It does so by inferring con-
nectivity by locally traversing the ring.

(iii) Zipper avoids storing most of the v.L and v.R refer-
ences explicitly. Instead it stores a pair of 3-bit codes
for most ring vertices. These identify exceptional tri-
angles and encode deltas rather than absolute ref-
erences. To help resolve these references in constant
time, Zipper stores two additional bits (amortized)
per triangle.

We point out that BELR is also based on differential coding.
Instead of storing v.L, BELR stores the difference v.L− v.
Here, we propose a different and novel coding: we store
v.P.L−v.L (described in Sec. 4.1). This discovery of a new
differential coding is a major factor in the large reduction
in storage cost offered by Zipper over LR and BELR. These
deltas are organized into fixed-sized blocks (described in
Sec. 4.2).

Based on these improvements, Zipper reduces connectiv-
ity storage to about 6 bpt, which represents a 35x improve-
ment over the standard ECT and a 5.8x improvement over
LR, and a 4.4x improvement over BELR.

In Sec. 4.3, we describe how Zipper computes c.o for
different triangle types.

4.1. Delta codes for vertices

The most significant storage improvement in Zipper
comes from the observation that, in most cases, v.L can be
recovered by subtracting a small integer decrement from
v.P.L (and similarly for v.R). Our tests indicate that in a
typical mesh, 95% of the deltas v.∆L = v.P.L − v.L and

4

v.∆L = 0 v.∆L = 1 v.∆L = 2 v.∆L = 3

v

v.P

v.L

v.P.L

v

v.P

v.L

v.P.L

v

v.P
v.Lv.P.L

v.∆L = 2

v

v.P

v.L

v.P.L

v

v.P

v.L

v.P.L

Fig. 4. The ring (blue) passes through a valence-six vertex v. The v.L
and v.P.L references are shown as red arrows. In absence of incident
T0 triangles, only deltas in {0, 1, 2, 3} are possible at v.

v.∆R = v.P.R− v.R are in the set D = {0, 1, 2, 3}. Hence,
in these cases, Zipper stores only two bits per delta, in-
stead of the 32-bit v.L or v.R references. Note that these
delta values are typically non-negative, because the ring
bounds “strips” of edge-adjacent triangles, and therefore
v.L and v.R decrease as v increases (see Fig. 2).

To understand why most deltas are in D, consider the
common case of a valence-6 vertex, as shown in Fig. 4. When
the triangles incident on v are T1 or T2 (such triangles
make up over 96% of the mesh), only the 0, 1, 2, 3 deltas are
possible. This observation also holds for vertices of lower
valence.

Configurations where the delta is not in D are flagged
as exceptions. For each exception we store a full 32-bit
reference to the corresponding tip vertex. We refer to such
tip vertices (v.L or v.R) as key vertices.

As in LR, we identify warts (pairs of adjacent T0/T2

triangles). Because T2 triangles have two ring edges and
would thus be represented twice, we store the adjacent T0

in place of the first (along the ring) T2 copy. Such a wart
pair, which we label Tw

0 /Tw
2 , is illustrated by triangles #95

and #97 in Fig. 8. Because not all T2 triangles are adjacent
to a T0, we store a wart bit with each ring triangle to
indicate whether it is a Tw

0 .
Unlike in LR, we use a special encoding of Tw

2 triangles
(v.P, v, v.N) to reduce the number of exceptions. Rather
than storing v.P (vertex #47 in Fig. 8) as the Tw

2 tip ver-
tex, which often would incur an exception, we set delta to
zero and rely on the fact that we can always recover the tip
vertex v.P from v when the wart bit of the previous trian-
gle is set. This encoding also ensures that the delta of the
following triangle (for example triangle #99 in Fig. 8) is
computed with respect to the Tw

0 tip vertex (vertex #37 in
Fig. 8). Furthermore, it avoids having to encode a second
exception.

Adding a wart bit to the two-bit deltas results in a 3-bit
encoding of each triangle. We reserve the 3-bit pattern 111
to mark exceptions, which would otherwise correspond to
the rare case of ∆ = 3 in a Tw

0 wart triangle.

4.2. Blocks

To recover v.L and v.R without summing all preceding
deltas along the ring, we force an exception every 32 v.L
and v.R references, and store these explicitly. We refer to
such a sequence of 32 references as a block. Thus, com-
puting v.L or v.R requires summing at most 31 deltas. To

vv.P v.N

v.L.0

v.P.0

(a) v.∆L = 1

vv.P v.N

v.P.0 v.2

vv.P

v.N

v.P.0

v.N.0

(b) v.∆L = 0

Fig. 5. Opposites can be efficiently computed for ∆ ∈ {0, 1}. For
instance, v.P.0.o = v.L.0 whenever v.∆L = 1.

accelerate this key step, we have devised an efficient tech-
nique that computes the sum of deltas using bit-level oper-
ations, without executing a loop, as described in Sec. 6. Be-
cause the number of exceptions per block varies, each block
stores a single index into an exception table (a dense ar-
ray of key vertex references). The storage required for a
block includes (1) a 32-bit reference for the first vertex of
each block, (2) a sequence of 32 3-bit delta/wart codes, and
(3) a 32-bit pointer into the exception table, resulting in a
minimum of 160 bits per block (5 bpt). We chose a block
size of 32 as a compromise: (1) we want the block to be
large, so that we can amortize the cost of storing the L and
R references at the beginning of each block and (2) we want
to be able to compute the sum of the deltas efficiently.

Whereas in LR each reference is stored as 32 bits, Zipper
allows references to be stored in only 5 bits. References
that generate exceptions require 36 bits. Consequently, for
LR, in the best case we improve storage by 6.4x, and in
the worst case, when every reference is an exception, we
introduce an overhead of 1

8 . For BELR, in the best case, we
improve storage by 5.2x, and in the worst case, we introduce
an overhead of 38%.

4.3. Computing opposites

LR derives adjacency information (the c.o references)
by using reference-equality tests and combinations of v.N ,
v.P , v.L, and v.R references. We explain here how we had
to modify this approach to accommodate Zipper’s more
compact representation.

4.3.1. From T1 to T1

For T1 and T2 triangles, we do not store opposite corners
c.o explicitly, but compute them when needed by decoding
the v.L and v.R references, and by using the implicit next
v.N = v + 1 mod mr and previous v.P = v − 1 mod mr

ring operators (where mr is the number of ring vertices).
An example of computing opposites corners is shown for
v.6 in Fig. 2. When only T1 and T2 triangles are involved,
we detect the local ring’s configuration and return the ap-
propriate corner. The four cases that need to be checked
are detailed in LR [2]. We can often compute opposite cor-
ners by examining only the delta, i.e. without fully decod-
ing v.L or v.R. As shown in Fig. 5, this is possible whenever
∆ ∈ {0, 1}.

5

v.2

v

u

c

(a) v.L = u

u.4

c

v

u

(b) u.R = v

u.P.0

c

v

u

(c) u.P.L = v

v.P.6

c
v

u

(d) v.P.R = u

Fig. 6. The four cases for finding c.o when c.t is a T0 triangle and
c.o.t is a T1 or T2 triangle. The expression for computing c.o is
shown inside either the orange or cream triangle.

4.3.2. From T0 to T1

Unlike in LR, which stores both vertices and opposites
explicitly for all T0 triangles, Zipper uses a different pro-
cedure for inferring opposites of T0 corners, when those do
not lie in another T0, and stores only the three vertex ref-
erences. Given the two vertices of the T0 not incident on
c (see Fig. 6), we use the v.P , v.L, and v.R operators to
navigate to the opposite corner. The four possible configu-
rations are illustrated in Fig. 6.

Because in practice roughly half of the T0 triangles are
adjacent to three T1 triangles, this elimination of three
references per T0 has a significant impact on storage.

4.3.3. Hashing to a T0

When the opposite corner c.o lies in a T0, it is not possible
to find it using only v.L, v.R, v.N , and v.P . When c lies in a
T1 (referred to as a Ti

1 triangle), LR stores a special pointer
into a table that holds both the tip vertex and the up to two
unknown opposites of c.t. To avoid the cost of storing these
exceptional references explicitly, we use an alternative data
structure that stores only opposite corners for exceptional
configurations. This data structure is used for all opposites
that cannot be inferred from the rules above, i.e. for all
corners c.o that lie in a T0.

For space efficiency, we use a d-ary cuckoo hash [17],
which maps each key to one of d possible locations, out of
which one is guaranteed to hold the hashed item. Aside from
O(N) insertion of N items and O(1) lookups, cuckoo hashes
have a desirable property in that, as d grows, the maximum
allowable load factor f approaches one. In practice, f =
97% when d = 4 (the setting we used), thus only 3% is
wasted on empty slots.

In Zipper, we use c as the key and store only the value
c.o in the hash. A typical hash lookup generates d possi-
ble candidates, which direct us to triangles c.o.t in the T0

table. Among the d candidates, we identify the one that
contains the edge e = (c.p.v, c.n.v) shared with c.t. If no
such triangle is found, c.o does not exist, indicating that e
is a border edge. The cost of storing an explicit opposite
reference is thus 32

f , or about 33 bits when d = 4.
LR stores up to 15 references for each T0 triangle (3 to

its vertices, 3 to opposite corners, and 9 from adjacent tri-
angles). Since, in a typical mesh, the percentage of T0 tri-
angles varies from 0.5% to 2.0%, using the LR approach to
represent T0 triangles adds between 2.5 and 10 bpt (a cost
obtained by amortizing the storage cost of these exceptions
over all triangles), and hence dominates the storage cost.

p
l
h
w

L

p
l
h
w

R

p
l
h
w
p
l
h
w

v.L

v.R

v0
v1
v2
v0
v1
v2
v0
v1
v2
v0
v1
v2
v0
v1
v2

v.L

v.R
v.R
v.R
v.R
v.L
v.R
v.R
v.R
v.R
v.L
v.L
v.L

L
R

c.o
c.o

c.o
c.o
c.o
c.o
c.o

c.o
c.o

c.o
c.o
c.o

delta/wart bits key vertices T0 vertices T0 opposites

Fig. 7. Zipper storage. Delta/wart bits: For each run of 32 v.L or v.R
references, we store a block consisting of four 32-bit integers that
represent a key vertex pointer p and, for each vertex in the run, a
low and high delta bit l and h, and a wart bit w, respectively. Key
vertices: Pointer p points to the exception table containing the key
vertices. T0 vertices: vertex IDs for T0 triangles. T0 opposites: 4-ary
cuckoo hash table containing opposite corner IDs for T0 triangles.

With our improved scheme, we store an average of 6.0 ref-
erences per T0 triangle.

One attractive property of Zipper is that, unlike LR, it
fully separates the representation of vertices and opposite
corners. For those applications that do not require adja-
cency (e.g. rendering, transmission, etc.), the corner hash
may be discarded without having to modify the Zipper in-
cidence representation.

5. Ring-Bender

In addition to reducing storage for T0 triangles, we may
also reduce their frequency. We observe that every T0 split
triangle is connected to one or more T2 triangles by a series
of T1 triangles that we call a branch. By applying the Ring-
Bender algorithm, we iteratively shorten branches until the
T2 and T0 become adjacent, and thus can be encoded as an
inexpensive wart. We apply Ring-Bender after constructing
the ring using Ring-Expander [2] and before delta encoding.

To remove the split triangles, we reroute the ring, starting
from the vertex v shared by both ring edges in a T2 triangle
(highlighted in Fig. 9 and Fig. 10). In effect, this rerouting
“flips” the T2 to the other side of the ring, shortens the
branch bounded by the T2, and leaves v isolated. To bring
v back into the ring, we flip one of its incident T1 triangles.
This procedure is performed iteratively until the branch is
eliminated and a wart is created. Note that we allow a pair
of triangles to be flipped so long as no new T0 splits are
introduced.

We show the result of a single step of Ring-Bender in
Fig. 9. Notice that the T0 triangle at the bottom is con-
verted to a Tw

0 , allowing us to encode it as a ring triangle.
Ring-Bender may create as many as three warts in each
step, but because Zipper encodes warts as if they were two
T1 triangles, using this solution does not increase the stor-
age or execution cost.

We described in the previous paragraph the most com-
mon configuration. Our algorithm, in Listing 1, distin-

6

33 34 35 36 37 38 39 3840

384138423843384438453846
3847

3848

3849
3850

3851 3852
3853

3854

3855
3856

385738583859

3860

386138623863

65 67 69 71 73 75 77 79
81

8385878991
9395

97

99

101

103 105
107

109

111113
115119

121

123125127

117

32

64

31

65

129

63

uint decode(const uint* data , uint t) {
uint i = t >> 6; // block index
uint j = (~t >> 1) & 31; // in -block index
uint b = 4 * (2 * i + (t & 1)); // block data pointer
uint p = data[b + 0]; // key vertex pointer
uint l = data[b + 1]; // low delta bits
uint h = data[b + 2]; // high delta bits
uint w = data[b + 3]; // wart bits
uint e = (l & h & w) >> j; // exception mask
uint d = ~(e | -e) << j; // delta mask
uint v = data[p + bc(e)]; // key vertex
return v - 2 * bc(h & d) - bc(l & d); // tip vertex

}

t = 113
i = 1
j = 7
b = 12
data[p+1..p+5] = {63, 50, 42, 61, 34}
l = 11111011 00100011 01111000 01100111
h = 10010101 01000000 00110110 00000100
w = 10010001 00000001 00100000 00100100
e = 10010001 00000000 00100000 0
d = 00000000 00000000 00011111 10000000
v = data[p + 4] = 61
v - 2 * 3 - 2 = 53

Fig. 8. Code for decoding v.L or v.R of a triangle (left), example block of 32 triangles {65, 67, . . . , 127} (center), and corresponding execution
of the code (right) for triangle 113. The triangle numbers for exceptions (e.g. 65, 71, . . .) are marked red. The 128-bit fixed-size block data
along with five 32-bit key vertices encode this block using 9 bpt.

T2

T1
T0

T1

(a) before

Tw
2

Tw
0

T0 T0

Tw
0

(b) flip 1

Tw
0

Tw
2

Tw
0

Tw
2

Tw
2

Tw
0

(c) flip 2

T0 T1

T2

T2

(d) bad flip 2

Fig. 9. A single step of Ring-Bender results in exchanging a pair of
triangles between the two sides of the ring (we say that we “flip”
them). (a) We begin at the marked vertex of a T2 triangle, (b) flip
the T2 to make a wart, and (c) make another flip to convert the
two new T0 triangles into warts. (d) If we flip the purple T2 in the
second step, we will fail to make warts of the T0 triangles.

Tw
0

Tw
2

T0T2

T1

(a) before

Tw
2

Tw
0Tw

2
Tw

2Tw
0

Tw
0T1

(b) after

Fig. 10. Ring-Bender zig-zag configuration corresponding to the
clause on line 8 in Listing 1. Here, the flipped triangles are an adja-
cent T2/T2 pair, rather than the non-adjacent T2/T1 pair in Fig. 9.

guishes (line 8) the special situation when two T2 triangles
are adjacent (Fig. 10).

1: do {

2: changed = false

3: for tri in triangles(mesh) {

4: if isT2(tri) {

5: tip = tipVertex(tri)

6: for neighbor in incidentTriangles(tip) {

7: if (isT1(neighbor) && !adjacent(neighbor , tri))

8: || (isT2(neighbor) && adjacent(neighbor , tri)) {

9: flipSides(tri)

10: flipSides(neighbor)

11: if anyT0(adjacentTriangles(tri)) {

12: flipSides(tri)

13: flipSides(neighbor)

14: } else {

15: changed = true

16: } } } } }

17:} while changed

Listing 1. Ring-Bender code

6. Implementation details

The most important change to the implementation from
LR is the computation of the v.L and v.R references. We
explain here how we compute the references to the tip ver-
tex for a given ring triangle t. C code for this computation
and an accompanying example are presented in Fig. 8.

As in LR, we number left and right ring triangles inter-
leaved: triangles on the left have even indices; those on the
right are odd. For a given ring triangle t, we first identify
the block i = b t

2×32c and the index j ∈ {0, . . . , 31} within
the block associated with t. We store the two delta bits
and the single wart bit separately as three consecutive 32-
bit words, such that bit j within each word is associated
with triangle 31 − j within the block (i.e. the most signif-
icant bit corresponds to the first triangle). We then fetch
and bitwise AND the delta and wart words to compute an
exception mask e (recall that exceptions are assigned the
3-bit binary code 111). To determine the number of excep-
tions that precede t within the block, we first shift out any
exceptions that follow t and then count the number of set
bits remaining. Bit counting can be done in constant time
using the SSE4 POPCNT assembly instruction, accessible
via the gcc builtin popcount() function. (Current In-
tel, AMD, and nVIDIA processors have hardware support
for the POPCNT assembly instruction.) The result is an
index into the exception list where the most recent key ver-
tex v is stored. We then form another mask d that has all
bits set for triangles between t and the exception, i.e. d
flags those deltas that require summation. This summation
is again accomplished in constant time using bit counting
of the low and high delta bits. The accumulated delta is
then subtracted off from the key vertex. Each of these steps
can be accomplished in constant time using no branches
or loops. Our implementation of this process is extremely
efficient: it compiles to only 33 assembly instructions.

7

CT SQuad LR BELR Zipper

0

1

10

100

1,000

0.5 1 2 4

(a) c.v

0

1

10

100

1,000

0.5 1 2 4

(b) c.o

10

100

1,000

10,000

0.5 1 2 4

(c) valence

100

1,000

10,000

100,000

0.5 1 2 4

(d) normal

10

100

1,000

10,000

100,000

1,000,000

0.5 1 2 4

(e) contour

Fig. 11. Per-element execution time (in nanoseconds) as a function of available main memory (GB) for various micro-benchmarks.

7. Results

We report in this section storage and performance results
for our Zipper mesh data structure and compare with prior
approaches. For these results we used a 2.66 GHz Intel Core
i7 MacbookPro with 8 GB of 1067 MHz DDR3 memory.
Our code was compiled using gcc 4.6.1 with the -O3 and
-msse4 compiler flags. As benchmark meshes we used the
collection from [2].

Our Ring-Bender technique, though simple, is quite ef-
fective at converting expensive T0 triangles to cheap warts.
Ring-Bender reduces the median fraction of T0 triangles
(relative to the total number of triangles) from 0.574% to
0.249%—a reduction of 2.3x—while increasing the ratio of
warts from 2.25% to 3.24%. This reduces the storage cost
by roughly 1 bpt on average.

The storage cost for Zipper can be expressed in terms of
the number of ring triangles nr, conditional exceptions ne

(i.e. not including the first key vertex in each block), T0

triangles n0, opposite corners nc that cannot be inferred,
total mesh triangles n, and the hash load factor f . Since
the hash stores only T0 corners, nc = 3n0. Thus the total
cost is 32

n

(
5dnr

32 e+ne +3n0 + 1
f nc

)
' 5+32ne+6n0

n bits per
triangle, where we have used the approximations n ' nr

and f ' 1. We break the above sum down into the per-
triangle storage cost for blocks (including the compulsory
first key vertex in a block), conditional key vertices, and
T0 vertices and opposites.

In Table 1, we report these costs for our benchmark
meshes, and compare them with the storage cost for the
(extended) CT [4], SQuad [14], and LR and BELR [2] data
structures, with BELR being the previously most storage
efficient random-access data structure for triangle meshes.
Similar to [2,14], Zipper storage increases with mesh irreg-
ularity (i.e. fewer valence-6 vertices). As seen in this table,
the median storage needed for Zipper is 5.98 bpt, which is
reduced to 5.74 bpt when adjacency is not needed. Stan-
dard LR (with adjacency) stores on average 34.6 bpt, which
is a factor of 5.8 more than Zipper storage. BELR (with
adjacency) stores on average 26.2 bpt, or 4.4x more than
Zipper. Indeed, the storage cost of Zipper is only about
3.7x higher than the theoretical minimum of 1.62 bpt [18]
achieved by state-of-the-art sequential mesh compressors
that do not support random access [19].

We also compare the performance of Zipper and the
above data structures (Fig. 11) as the amount of main mem-

ory available is varied, using the micro-benchmarks pro-
posed in [2]. Our experiments were performed on the David
mesh (55.5 million triangles). These results suggest that
access speed is higher for the more verbose data structures
when sufficient main memory is available, as accessing the
more compact data structures involves more computation
and nonsequential memory accesses. When the mesh fits
in RAM, the Zipper c.v operator is 1.8x slower and the
c.o operator is 3.6x slower than in LR, though the Zipper
operators are 2–3 times faster than their BELR counter-
parts. Our naive version of Zipper, which loops over runs
of vertices to sum up deltas, runs ten times slower than the
optimized version reported here. As seen in Fig. 11, com-
pactness becomes beneficial when less memory is available,
as then page faults eventually dominate the access time.
Being the most compact data structure by far, Zipper pro-
vides the highest performance under memory pressure.

Although these low-level kernels stress the performance
of the mesh access operators, they may not be representa-
tive of actual mesh processing applications, which normally
maintain additional data structures and perform more com-
plex computations. As one example application, we imple-
mented Dijkstra’s (Euclidean) shortest path algorithm be-
tween mesh vertices, which requires access to geometry,
the ability to mark visited vertices, and maintenance of a
priority queue. We timed this (still rather simple) applica-
tion on the Welsh dragon mesh (which fits in RAM), and
found Zipper to be only 1.18x, 1.39x, and 1.42x slower than
Surface-Mesh [10], CT, and LR, respectively. With a trend
of decreasing memory per core and inter-core bandwidth,
we expect that the substantial savings in storage afforded
by our Zipper data structure will eventually lead to faster
mesh access than using more verbose representations.

8. Conclusions

We present the Zipper data structure for representing
triangle meshes. Zipper reduces the storage needed for the
connectivity information to about 6 bits per triangle or
equivalently to 0.19 rpt. This represents a 5.8x reduction
of storage with respect to standard LR and a 4.4x storage
reduction with respect to BELR (bit-efficient LR).

Zipper combines the LR approach with three improve-
ments: differential coding, inference of adjacency informa-
tion, and a method for reducing the number of costly split
triangles. We have developed a simple and efficient (linear-

8

mesh n %v6
delta frequency (%) Zipper storage cost (bpt) storage cost (bpt) ratio to Zipper

∆0 ∆1 ∆2 ∆3 ex. block key T0 v T0 o total CT SQuad LR BELR CT SQuad LR BELR

bunny 69,451 75.1 23.8 51.8 17.7 2.3 4.5 5.022 0.426 0.231 0.238 5.92 208 65.73 33.98 20.27 35.13 11.10 5.74 3.42

rocker 80,354 65.2 26.0 48.4 18.7 2.9 4.0 5.006 0.286 0.161 0.167 5.62 208 65.73 33.76 18.37 37.01 11.70 6.01 3.27

horse 96,966 66.5 23.7 52.3 17.6 2.4 4.0 5.006 0.279 0.179 0.186 5.65 208 65.48 33.76 21.59 36.81 11.59 5.98 3.82

dinosaur 112,384 57.9 29.3 43.3 18.8 3.7 4.9 5.006 0.572 0.344 0.356 6.28 208 66.30 35.39 26.21 33.12 10.56 5.64 4.17

armadillo 345,944 52.6 30.3 41.2 20.2 4.0 4.3 5.002 0.381 0.198 0.205 5.79 208 66.21 34.37 26.12 35.92 11.43 5.94 4.51

hand 654,666 53.4 32.5 38.0 19.6 4.4 5.5 5.000 0.754 0.416 0.430 6.60 208 67.07 37.25 33.86 31.52 10.16 5.64 5.13

buddha 1,087,716 32.1 39.1 26.9 16.4 5.1 12.6 4.997 3.016 2.635 2.720 13.37 208 68.80 50.66 45.26 15.56 5.15 3.79 3.39

welsh 2,210,378 86.7 21.7 54.9 18.6 1.3 3.4 5.000 0.094 0.058 0.059 5.21 208 64.86 32.64 26.12 39.92 12.45 6.26 5.01

thai 10,000,000 44.4 35.4 33.5 18.7 5.3 7.1 5.000 1.264 0.839 0.866 7.97 208 67.55 40.32 34.35 26.10 8.48 5.06 4.31

david 55,514,795 51.6 28.2 45.1 18.0 3.8 4.8 5.010 0.533 0.247 0.254 6.04 208 66.62 34.85 28.89 34.44 11.03 5.77 4.78

median 55.7 28.7 44.2 18.6 3.8 4.6 5.004 0.480 0.239 0.246 5.98 208 66.26 34.61 26.16 34.79 11.07 5.75 4.24

mean 58.5 29.0 43.5 18.4 3.5 5.5 5.005 0.760 0.531 0.548 6.84 208 66.44 36.70 28.10 32.55 10.36 5.58 4.18

Table 1
For each mesh we indicate its triangle count n and percentage of valence-6 vertices; the percentage of delta values 0–3 and exceptions; the
Zipper storage cost for fixed-size block data, conditional key vertices, T0 vertex references, T0 opposite references; and the total Zipper, CT,
SQuad, LR and BELR storage cost (in bits per triangle) and ratio relative to Zipper.

time and space complexity) Zipper construction algorithm
and an efficient implementation of constant-time random
access and traversal operators, which are between 1.8 and
3.6 times slower than their counterparts in LR. Our mesh
traversal and query operators on Zipper are faster than op-
erators on BELR.

We show that in some configurations, this storage re-
duction (when compared to LR) leads to fewer page faults
and cache misses, and that the associated performance im-
provements exceed the performance loss of the operators.

Finally, we suggest Zipper as a more compact alternative
to previously proposed formats for triangle meshes and that
Zipper may be useful even in applications that do not re-
quire adjacency information, such as rendering large mod-
els on mobile devices.

Acknowledgments

This work was performed in part under the auspices of
the U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under Contract DE-AC52-07NA27344.

References

[1] M. Mantyla, Introduction to Solid Modeling, Computer Science
Press, 1988.

[2] T. Gurung, M. Luffel, P. Lindstrom, J. Rossignac, LR:
Compact connectivity representation for triangle meshes, ACM
Transactions on Graphics 30 (4) (2011) 67:1–67:8.

[3] B. G. Baumgart, Winged edge polyhedron representation, Tech.
Rep. CS-TR-72-320, Stanford University (1972).

[4] J. Rossignac, A. Safonova, A. Szymczak, 3D compression made
simple: Edgebreaker on a corner-table, in: Shape Modeling &
Applications, 2001, pp. 278–283.

[5] P. Lienhardt, n-dimensional generalized combinatorial maps and
cellular quasi-manifolds, International Journal of Computational
Geometry and Applications 4 (3) (1994) 275–324.

[6] T. Gurung, J. Rossignac, SOT: Compact representation for
triangle and tetrahedral meshes, Tech. Rep. GT-IC-10-01,
Georgia Institute of Technology (2010).

[7] E. Brisson, Representing geometric structures in d dimensions:
Topology and order, in: Proceedings of the fifth annual
Symposium on Computational geometry, 1989, pp. 218–227.

[8] L. Guibas, J. Stolfi, Primitives for the manipulation of general
subdivisions and the computation of Voronoi diagrams, ACM
Transactions on Graphics 4 (2) (1985) 74–123.

[9] D. Dobkin, M. Laszlo, Primitives for the manipulation of three-
dimensional subdivisions, in: Proceedings of the third annual
Symposium on Computational geometry, 1987, pp. 86–99.

[10] D. Sieger, M. Botsch, Design, implementation, and evaluation
of the surface mesh data structure, in: International Meshing
Roundtable, 2011, pp. 533–550.

[11] M. Kallmann, D. Thalmann, Star-vertices: a compact
representation for planar meshes with adjacency information,
Journal of Graphics Tools 6 (1) (2001) 7–18.

[12] S. Campagna, L. Kobbelt, H.-P. Seidel, Directed edges—a
scalable representation for triangle meshes, Journal of Graphics
Tools 3 (4) (1998) 1–11.

[13] L. Castelli Aleardi, O. Devillers, Catalog based representation
of 2D triangulation, International Journal of Computational
Geometry & Applications 21 (4) (2011) 393–402.

[14] T. Gurung, D. Laney, P. Lindstrom, J. Rossignac, SQuad:
Compact representation for triangle meshes, Computer Graphics
Forum 30 (2) (2011) 355–364.

[15] J. Snoeyink, B. Speckmann, Tripod: A minimalist data structure
for embedded triangulations, in: Computational Graph Theory
and Combinatorics, 1999.

[16] L. Castelli Aleardi, O. Devillers, Explicit array-based compact
data structures for triangulations, Tech. Rep. 00623762, INRIA
(2011).

[17] D. Fotakis, R. Pagh, P. Sanders, P. Spirakis, Space efficient hash
tables with worst case constant access time, Lecture Notes in
Computer Science 2607 (2003) 271–283.

[18] W. Tutte, A census of planar triangulations, Canadian Journal
of Mathematics 14 (1962) 21–38.

[19] J. Rossignac, Edgebreaker: Connectivity compression for triangle
meshes, IEEE Transactions on Visualization and Computer
Graphics 5 (1) (1999) 47–61.

9

